
Strongly solving the Royal Game of Ur

Padraig Lamont, and Jeroen Olieslagers

March 2025

Abstract

We have strongly solved multiple conjectured rule sets for the Royal
Game of Ur, an ancient stochastic two-player board game, including
the Finkel, Blitz, Masters, and Aseb rule sets. Our system can be
adapted to strongly solve other variants of these rule sets as well. For
each rule set, we computed a map containing the probability that the
first player would win when starting from each position, under optimal
play. This is used to find the optimal move from every position by
selecting the move that leads to the current players highest chance
of winning. This report details our approach of using value iteration
and the Bellman equations to generate the solution maps, provides
metrics about the convergence of our algorithm, and presents practical
optimization techniques that significantly reduce computational effort.

1 Introduction

This report is a work-in-progress. The method is complete, but we still plan
to expand upon verification and results further.

The Royal Game of Ur is a two-player race game containing chance, that has
been dated back over 4500 years. There have been many proposed rule sets
for the Royal Game of Ur over time, designed to match historical evidence
or to create a fun game to play. The most popular rule set today is the
Finkel rule set, proposed by Irving Finkel. We have solved this rule set,
along with other commonly played rule sets including the Blitz rule set,
the Masters rule set, and a rule set for a similar game called Aseb that is
played on a longer board. We strongly solved these rule sets by exhaustive
computational analysis.

1

To “strongly solve” the game means to determine the optimal move from
every possible game state, enabling perfect play from any starting point.
This was accomplished by modeling the game as a Markov decision process
and applying value iteration, a dynamic programming algorithm, to compute
the probability that the first player (henceforth “light”) would win starting
from every possible game state, under optimal play.

Through our use of value iteration to solve the Bellman equations, the opti-
mal win probabilities and corresponding optimal moves are obtained for all
possible states in each rule set. This includes all of the 2.76 × 108 possible
states under the Finkel rule set, the 8.25×107 states for Blitz, the 1.00×109

states for Masters, and the 8.25× 107 states for Aseb.

This report describes the computational approach used to solve these rule
sets, focusing on the formulation of the Bellman equations, the implementa-
tion of value iteration, and techniques to optimize convergence. We will also
report metrics related to the convergence of the algorithm, metrics about
our final solved map artifacts, and link to our open-source libraries that were
used to solve the game.

2 Methods

2.1 Bellman Equations for Optimal Play

The Royal Game of Ur can be modeled as a stochastic game with perfect
information and chance events (dice rolls). We define V (s) as the value of
state s, representing the probability that light eventually wins from s under
optimal play. Terminal states (in which one player has already won) have
boundary values: V (s) = 1 if s is a state where light has won, and V (s) = 0
if s is a state where dark (the opponent) has won.

For any non-terminal state, the Bellman optimality equations can be written
to reflect the turn-based, adversarial, and stochastic nature of the game. If
it is light’s turn in state s, that player will choose an action (move) that
maximizes their winning probability. If it is dark’s turn, dark will choose a
move that minimizes V (s) (since dark’s goal is to minimize light’s chance of
winning).

Moreover, before a move is chosen, a dice roll occurs, introducing a random
chance over possible rolls. Let R be the set of possible dice rolls, and let
A(s, r) be the set of legal moves in state s given a roll r. The probabilities

2

P (r) for r ∈ R represent the chance of rolling r using the dice. We can then
express the Bellman equations as follows:

V (s) =


∑
r∈R

P (r) max
a∈A(s,r)

V
(
sr,a

)
, if s is light’s turn,∑

r∈R
P (r) min

a∈A(s,r)
V
(
sr,a

)
, if s is dark’s turn.

(1)

Here, sr,a denotes the successor state that results from state s after a dice
roll r and a subsequent move a. These equations formalize how the value
of a state is derived from the values of its immediate successor states: on
light’s turn one assumes optimal play by light (taking the maximum value
outcome) and on dark’s turn one assumes optimal play by dark (taking the
minimum value outcome), and in all cases averaging over the probability
distribution of dice outcomes. Equation (1) embodies Bellman’s principle of
optimality: at any state, the optimal play yields a value that is the best (or
worst) achievable via one step followed by optimal play thereafter.

2.2 Value Iteration Algorithm

We employed value iteration to solve these Bellman equations. Value itera-
tion is an iterative dynamic programming method that starts with an initial
approximation of V (s) for all states and repeatedly updates these values
using the Bellman equations until convergence.

In our implementation, all states were stored in a map that represented V ,
where each state was mapped to the chance that light would win starting
from that state (we call this map the “state map”). Terminal states were
initialized to their true values (1 for light wins, 0 for dark wins), while all
other states can be initialized arbitrarily (e.g., to 0.5). These initial guesses
will later be corrected by iterations of value iteration.

In each iteration of value iteration, the algorithm visits every non-terminal
state s and replaces the current stored value in the state map, V (s), with
a new value computed by the right-hand side of Equation (1). This update
retrieves values of successor states, V

(
sr,a

)
, from the state map as well.

This iterative process can be applied either synchronously (read from an
old map of V , and write into a new map to use in the next iteration) or
asynchronously (update one copy of V in-place). In either case, the values
converge to the true optimal values as the updates are repeated. In our case,
we updated the state map in-place.

3

The iteration is stopped when the maximum change, maxs |Vnew(s)−Vold(s)|,
falls below a small threshold. This indicates that V (s) has stabilized within
the desired precision. For our largest and most accurate maps, we stopped
value iteration when there was not a single bit that changed in the entire
map during an iteration when using 64-bit floating point numbers to store
the win probabilities.

2.3 Optimization using Irreversible Moves

The first major optimization for solving the Royal Game of Ur arises due to
irreversible moves. In the Royal Game of Ur, scoring a piece is irreversible.
Once you score a piece, it is not possible to reach a state before you scored
the piece again. We can exploit this to optimize our use of value iteration.

The reason that value iteration is required to solve the Markov decision
process representing the game is due to the cycles within the game tree.
These cycles stop us from simply evaluating the game tree in a single pass.
However, the irreversible move of scoring a piece breaks all cycles in the game
tree, providing directed boundaries. These boundaries break the game tree
up into subsets, where each subset only depends upon its successor subsets
(the next subsets of states that can be reached by scoring a piece). We
can, therefore, solve each of these subsets one-by-one, in an order that goes
backwards from the end of the game.

This still guarantees optimality, and it reduces the computational effort
required to solve the game significantly. Instead of iterating through the
entire state space every iteration, we can just iterate through a subset of
the state space until it converges, before moving on to the next subset. This
reduces time spent on wasted calculations for states whose successor states
have poor estimates of their value.

2.4 Optimization using Game Symmetry

The second major optimization for solving the Royal Game of Ur arises due
to the symmetry between the two players in the game. If you swapped the
two players, the chance of winning starting from the swapped position would
not change. This allows us to only compute and store half of the states in
each rule set. In our case, we stored only states where it is light’s turn.

When we want to look up a state where it is dark’s turn, we swap the players

4

in the position, look up the chance that light would win if it were light’s
turn, and then invert the resulting probability by computing 1−p. This will
give us the probability that light would win from a state where it is dark’s
turn.

2.5 State Map Implementation

A challenge in solving the Royal Game of Ur is the size of its state space. For
example, the Finkel rule set contains 2.76×108 reachable states in total, and
the Masters rule set contains over a billion states. Storing this many states
requires careful memory management. The main concern is that storing the
game states in the map can take up a lot of memory.

We addressed this by encoding each state into a compact bit representation
for use as keys in our state map. Each state in the Finkel rule set is en-
coded into 32-bits, and each state under the Blitz, Masters, and Aseb rule
sets are encoded into 34-bits. These encodings include all essential informa-
tion (position of pieces and scores), using bit-packing techniques to remove
redundancies and compress the contents of the board.

Due to the symmetry of the game, the turn indicator bit can be omitted by
always treating a state from the perspective of the light player. The number
of pieces that each player has yet to play can also be omitted, as this can
be calculated from the state of the game board and the players’ scores.

The position of all pieces on the game board is stored in two separate sections
of the binary key. The first section stores the tiles in each players’ safe zones,
and the second section stores the tiles in the war zone. In the safe zones, only
one bit is needed to store the state of each tile, as each tile is only accessible
by one player. We just need to store whether each tile is occupied or not.
The war zone tiles have 3 states they could take. Tiles could be empty, be
occupied by light, or be occupied by dark. To store these states, we encode
each war-zone tile using 2-bits and then compress the results using a simple
dictionary encoding.

3 Verification

We have generated maps down to a stopping tolerance of 10−8. At this
tolerance, and all tolerances at or below 0.0001% (10−4), there are no ties in
win percentage between available moves from each state. This means that

5

we know the single best move to make from each state at a precision down
to approximately 0.00000001%. We are confident that this tolerance on the
win percentages that we calculated leads to the selection of optimal moves.

However, at the 10−3 tolerance that the smaller HuggingFace models are
saved to, there are ties between moves in some states. This occurs because
there are some states where the difference in win percentage between moves
is less than 10−3, which our 16-bit values cannot represent.

4 Results

The final artifacts that we produced for each rule set are maps containing
the win probability for light from every state where it is light’s turn. We
have generated two versions of these maps for each rule set. Currently, the
HuggingFace only contains maps with 16-bit values. We plan to upload new
32-bit versions of these models that are more accurate soon, for applications
where absolute optimal play is desired.

Rule Set States Map Entries Size (16-bit)

Finkel 2.76× 108 1.38× 108 827.4 MB
Blitz 8.25× 107 4.12× 107 247.5 MB
Masters 1.00× 109 5.01× 108 3.01 GB
Aseb 8.25× 107 4.12× 107 247.5 MB

Table 1: Size of maps for each rule set

We provide downloads for the solved maps on HuggingFace, and libraries
for generating and reading them on GitHub:

• Download the maps on HuggingFace:
https://huggingface.co/sothatsit/RoyalUrModels

• Read and generate the maps using RoyalUr-Java:
https://github.com/RoyalUr/RoyalUr-Java

• Read the maps using RoyalUr-Python:
https://github.com/RoyalUr/RoyalUr-Python

• Generate the maps using Jeroen’s Julia implementation:
https://github.com/JeroenOlieslagers/game_of_ur

6

https://huggingface.co/sothatsit/RoyalUrModels
https://github.com/RoyalUr/RoyalUr-Java
https://github.com/RoyalUr/RoyalUr-Python
https://github.com/JeroenOlieslagers/game_of_ur

	Introduction
	Methods
	Bellman Equations for Optimal Play
	Value Iteration Algorithm
	Optimization using Irreversible Moves
	Optimization using Game Symmetry
	State Map Implementation

	Verification
	Results

